Toward An IoT-based Expert System for Heart Disease Diagnosis
نویسندگان
چکیده
IoT technology has been recently adopted in the healthcare system to collect Electrocardiogram (ECG) signals for heart disease diagnosis and prediction. However, noises in collected ECG signals make the diagnosis and prediction system unreliable and imprecise. In this work, we have proposed a new lightweight approach to removing noises in collected ECG signals to perform precise diagnosis and prediction. First, we have used a revised Sequential Recursive (SR) algorithm to transform the signals into digital format. Then, the digital data is proceeded using a revised Discrete Wavelet Transform (DWT) algorithm to detect peaks in the data to remove noises. Finally, we extract some key features from the data to perform diagnosis and prediction based on a feature dataset. Redundant features are removed by using Fishers Linear Discriminant (FLD). We have used an ECG dataset from MIT-BIH (PhisioNet) to build a knowledge-base diagnosis features. We have implemented a proof-ofconcept system that collects and processes real ECG signals to perform heart disease diagnosis and prediction based on the built knowledgebase.
منابع مشابه
Diagnosis of Coronary Artery Disease via a Novel Fuzzy Expert System Optimized by Cuckoo Search
In this paper, we propose a novel fuzzy expert system for detection of Coronary Artery Disease, using cuckoo search algorithm. This system includes three phases: firstly, at the stage of fuzzy system design, a decision tree is used to extract if-then rules which provide the crisp rules required for Coronary Artery Disease detection. Secondly, the fuzzy system is formed by setting the intervals ...
متن کاملA Fuzzy Expert System for Diagnosis of Acute Lymphocytic Leukemia in Children
Fuzzy expert systems are one of the most practical intelligent models with the high potential for managing uncertainty associated to the medical diagnosis. In this paper, a fuzzy inference system (FIS) for diagnosing of acute lymphocytic leukemia in children has been introduced. The fuzzy expert system applies Mamdani reasoning model that has high interpretability to explain system results to e...
متن کاملA Fuzzy Expert System for Diagnosis of Acute Lymphocytic Leukemia in Children
Fuzzy expert systems are one of the most practical intelligent models with the high potential for managing uncertainty associated to the medical diagnosis. In this paper, a fuzzy inference system (FIS) for diagnosing of acute lymphocytic leukemia in children has been introduced. The fuzzy expert system applies Mamdani reasoning model that has high interpretability to explain system results to e...
متن کاملType-2 Fuzzy Hybrid Expert System For Diagnosis Of Degenerative Disc Diseases
One-third of the people with an age over twenty have some signs of degenerated discs. However, in most of the patients the mere presence of degenerative discs is not a problem leading to pain, neurological compression, or other symptoms. This paper presents an interval type-2 fuzzy hybrid rule-based system to diagnose the abnormal degenerated discs where pain variables are represented by interv...
متن کاملA Novel Fuzzy-Genetic Differential Evolutionary Algorithm for Optimization of A Fuzzy Expert Systems Applied to Heart Disease Prediction
This study presents a novel intelligent Fuzzy Genetic Differential Evolutionary model for the optimization of a fuzzy expert system applied to heart disease prediction in order to reduce the risk of heart disease. To this end, a fuzzy expert system has been proposed for the prediction of heart disease. The proposed model can be used as a tool to assist physicians. In order to: (1) tune the para...
متن کامل